

ptracer

ptracer is a library providing on-demand, programmatic system call tracing
in Python programs using
ptrace [http://manpages.ubuntu.com/manpages/man2/ptrace.2.html].

ptracer works on Python 2.7 and Python 3.5 or later. Currently, only
64-bit Linux platforms are supported.

Installation

ptracer has no external dependencies and the recommended way to
install it is to use pip:

$ pip install ptracer

Building from source

If you want to build ptracer from a Git checkout you will need:

	A working C compiler.

	CPython header files. These can usually be obtained by installing
the relevant Python development package: python-dev/python3-dev
on Debian/Ubuntu, python-devel/python3-devel on RHEL/Fedora.

Once the above requirements are satisfied, use the usual setup.py commands
or pip install -e . to install the newly built version in development mode.

Running tests

To execute the testsuite simply run:

$ python setup.py test

ptracer Usage

The most common way of tracing a block of code is to surround it with the
context() context manager:

import traceback
import ptracer

def callback(syscall):
 print('{}({}) -> {}'.format(
 syscall.name,
 ', '.join(repr(arg.value) for arg in syscall.args),
 syscall.result.text))
 print('Traceback: ')
 print(''.join(traceback.format_list(syscall.traceback)))

with ptracer.context(callback):
 open('/dev/null', 'wb')

ptracer also provides the explicit enable() and
disable() functions to begin and terminate tracing.

Filtering

Ptracer allows elaborate syscall filtering via the filter argument:

flt = [
 ptracer.SysCallPattern(
 name='open',
 args=[
 re.compile(b'/tmp/.*'),
 lambda arg: arg.value & os.O_WRONLY
],
 result=lambda res: res.value > 0
)
]

with ptracer.context(callback, filter=flt):
 # traced code
 ...

In the above example, ptracer will invoke the callback only for successful
attempts to open files in the “/tmp” directory for writing.

See the documentation for the
SysCallPattern class for more
information on setting up filters.

Module Reference

	
context(callback, filter=None)

	Set up and return a tracing context object that should be used as a context
manager. Tracing will begin once the context manager block is entered,
and will terminate on block exit.

The callback parameter specifies a callable that should accept a
SysCall instance as a single argument. The callback is
invoked asynchronously in a thread separate from the traced program.

If filter is not None, it is expected to contain a
SysCallPattern instance or an iterable of SysCallPattern
instances. The callback will be called if the syscall matches any of
the provided patterns. If filter is None, no filtering is done,
and callback will be invoked for every syscall.

	
enable(callback, filter=None)

	Start tracing of the current program immediately. The callback and
filter arguments have the same meaning as in context(). To stop
tracing call disable().

	
disable()

	Stop tracing of the current program.

	
class SysCall

	A description of a system call performed by a program. SysCall
instances are passed to the callback passed to context() or
enable().

	
name

	The name of the system call. If the name could not be identified,
the property will contain '<syscallnumber>', where syscallnumber
is a platform-specific integer representing the system call.

	
pid

	The system identifier of the OS thread in which the system call
was performed.

	
args

	A list of SysCallArg instances representing the system call
arguments. The values of the arguments are taken after the system
call exit.

	
result

	An instance of SysCallResult representing the system call
return value.

	
traceback

	A list of stack trace entries similar to the one returned by
traceback.extract_stack [https://docs.python.org/3/library/traceback.html#traceback.extract_stack].

The trace corresponds to the call stack which triggered the system call.

	
class SysCallArg

	A description of a system call argument. Instances of SysCall
contain a list of SysCallArg objects in the args attribute.

	
name

	The name of the syscall parameter. If the name could not be identified,
this property will contain paramN for the N-th argument.

	
type

	The type of the syscall parameter represented by a CType
instance. If the real type could not be identified, the type will
be reported as unsigned long.

	
raw_value

	An integer representing the raw value of the syscall argument.

	
value

	An object representing the unpacked value of the syscall argument
according to its type. For pointer values this will be the dereferenced
value. Known types will be converted into corresponding Python values.

	
class SysCallResult

	A description of a system call return value. Instances of SysCall
contain an SysCallResult object in the result attribute.

	
type

	The type of the syscall return value represented by a CType
instance. If the real type could not be identified, the type will
be reported as unsigned long.

	
raw_value

	An integer representing the raw value of the syscall return value.

	
value

	An object representing the unpacked value of the syscall return value
according to its type. For pointer values this will be the dereferenced
value. Known types will be converted into corresponding Python values.

	
class CType

	A description of a system call value type.

	
names

	A list of tokens in the C declaration of the type. For example,
'unsigned long' will be represented as ['unsigned', 'long'].

	
ctype

	A ctypes data type [https://docs.python.org/3/library/ctypes.html#ctypes-fundamental-data-types].

	
ptr_indirection

	The number of pointer indirections. For example, a 'const char **'
type will have ptr_indirection of 2, and the ctype attribute
set to c_char [https://docs.python.org/3/library/ctypes.html#ctypes.c_char].

	
class SysCallPattern(name=None, args=None, result=None)

	An object used to match system calls. name, args, and result specify
the patterns for the corresponding attributes of the SysCall
object. If specified, args, should be a list of patterns matching the
order of syscall arguments, and not all arguments have to be listed.
Each pattern value can be:

	A callable that receives a SysCallArg or a SysCallResult
instance and returns True when the value matches, and False
otherwise.

	An object with a match() method that received an unpacked value
of a syscall attribute and returns True when the value matches, and
False otherwise.
A regular expression object [https://docs.python.org/3/library/re.html#re-objects] can be used.
For example: SysCallPattern(name=re.compile('open.*')).

	Any python object, which is compared with the unpacked value directly.

	
match(syscall)

	Return True if syscall matches the pattern and False otherwise.

 Python Module Index

 p

 		 	

 		
 p	

 	
 	
 ptracer	
 On-demand system call tracing in Python programs.

Index

 A
 | C
 | D
 | E
 | M
 | N
 | P
 | R
 | S
 | T
 | V

A

 	
 	args (SysCall attribute)

C

 	
 	context() (in module ptracer)

 	
 	CType (class in ptracer)

 	ctype (CType attribute)

D

 	
 	disable() (in module ptracer)

E

 	
 	enable() (in module ptracer)

M

 	
 	match() (SysCallPattern method)

N

 	
 	name (SysCall attribute)

 	(SysCallArg attribute)

 	
 	names (CType attribute)

P

 	
 	pid (SysCall attribute)

 	
 	ptr_indirection (CType attribute)

 	ptracer (module)

R

 	
 	raw_value (SysCallArg attribute)

 	(SysCallResult attribute)

 	
 	result (SysCall attribute)

S

 	
 	SysCall (class in ptracer)

 	SysCallArg (class in ptracer)

 	
 	SysCallPattern (class in ptracer)

 	SysCallResult (class in ptracer)

T

 	
 	traceback (SysCall attribute)

 	
 	type (SysCallArg attribute)

 	(SysCallResult attribute)

V

 	
 	value (SysCallArg attribute)

 	(SysCallResult attribute)

 nav.xhtml

 Table of Contents

 		
 ptracer

_static/ajax-loader.gif

_static/minus.png

_static/plus.png

_static/file.png

_static/up.png

_static/up-pressed.png

_static/comment.png

_static/down-pressed.png

_static/comment-bright.png

_static/comment-close.png

_static/down.png

