
Ptracer Documentation
Release 0.6.1

Pinterest Inc.

Jul 18, 2022

Contents

1 Installation 3
1.1 Building from source . 3
1.2 Running tests . 3

2 ptracer Usage 5
2.1 Filtering . 5

3 Module Reference 7

Python Module Index 11

Index 13

i

ii

Ptracer Documentation, Release 0.6.1

ptracer is a library providing on-demand, programmatic system call tracing in Python programs using ptrace.

ptracer works on Python 2.7 and Python 3.5 or later. Currently, only 64-bit Linux platforms are supported.

Contents 1

http://manpages.ubuntu.com/manpages/man2/ptrace.2.html

Ptracer Documentation, Release 0.6.1

2 Contents

CHAPTER 1

Installation

ptracer has no external dependencies and the recommended way to install it is to use pip:

$ pip install ptracer

1.1 Building from source

If you want to build ptracer from a Git checkout you will need:

• A working C compiler.

• CPython header files. These can usually be obtained by installing the relevant Python development package:
python-dev/python3-dev on Debian/Ubuntu, python-devel/python3-devel on RHEL/Fedora.

Once the above requirements are satisfied, use the usual setup.py commands or pip install -e . to install
the newly built version in development mode.

1.2 Running tests

To execute the testsuite simply run:

$ python setup.py test

3

Ptracer Documentation, Release 0.6.1

4 Chapter 1. Installation

CHAPTER 2

ptracer Usage

The most common way of tracing a block of code is to surround it with the context() context manager:

import traceback
import ptracer

def callback(syscall):
print('{}({}) -> {}'.format(

syscall.name,
', '.join(repr(arg.value) for arg in syscall.args),
syscall.result.text))

print('Traceback: ')
print(''.join(traceback.format_list(syscall.traceback)))

with ptracer.context(callback):
open('/dev/null', 'wb')

ptracer also provides the explicit enable() and disable() functions to begin and terminate tracing.

2.1 Filtering

Ptracer allows elaborate syscall filtering via the filter argument:

flt = [
ptracer.SysCallPattern(

name='open',
args=[

re.compile(b'/tmp/.*'),
lambda arg: arg.value & os.O_WRONLY

],
result=lambda res: res.value > 0

)
]

(continues on next page)

5

Ptracer Documentation, Release 0.6.1

(continued from previous page)

with ptracer.context(callback, filter=flt):
traced code
...

In the above example, ptracer will invoke the callback only for successful attempts to open files in the “/tmp” directory
for writing.

See the documentation for the SysCallPattern class for more information on setting up filters.

6 Chapter 2. ptracer Usage

CHAPTER 3

Module Reference

context(callback, filter=None)
Set up and return a tracing context object that should be used as a context manager. Tracing will begin once the
context manager block is entered, and will terminate on block exit.

The callback parameter specifies a callable that should accept a SysCall instance as a single argument. The
callback is invoked asynchronously in a thread separate from the traced program.

If filter is not None, it is expected to contain a SysCallPattern instance or an iterable of
SysCallPattern instances. The callback will be called if the syscall matches any of the provided patterns.
If filter is None, no filtering is done, and callback will be invoked for every syscall.

enable(callback, filter=None)
Start tracing of the current program immediately. The callback and filter arguments have the same meaning as
in context(). To stop tracing call disable().

disable()
Stop tracing of the current program.

class SysCall
A description of a system call performed by a program. SysCall instances are passed to the callback passed
to context() or enable().

name
The name of the system call. If the name could not be identified, the property will contain
'<syscallnumber>', where syscallnumber is a platform-specific integer representing the sys-
tem call.

pid
The system identifier of the OS thread in which the system call was performed.

args
A list of SysCallArg instances representing the system call arguments. The values of the arguments are
taken after the system call exit.

result
An instance of SysCallResult representing the system call return value.

7

Ptracer Documentation, Release 0.6.1

traceback
A list of stack trace entries similar to the one returned by traceback.extract_stack.

The trace corresponds to the call stack which triggered the system call.

class SysCallArg
A description of a system call argument. Instances of SysCall contain a list of SysCallArg objects in the
args attribute.

name
The name of the syscall parameter. If the name could not be identified, this property will contain paramN
for the N-th argument.

type
The type of the syscall parameter represented by a CType instance. If the real type could not be identified,
the type will be reported as unsigned long.

raw_value
An integer representing the raw value of the syscall argument.

value
An object representing the unpacked value of the syscall argument according to its type. For pointer values
this will be the dereferenced value. Known types will be converted into corresponding Python values.

class SysCallResult
A description of a system call return value. Instances of SysCall contain an SysCallResult object in the
result attribute.

type
The type of the syscall return value represented by a CType instance. If the real type could not be
identified, the type will be reported as unsigned long.

raw_value
An integer representing the raw value of the syscall return value.

value
An object representing the unpacked value of the syscall return value according to its type. For pointer
values this will be the dereferenced value. Known types will be converted into corresponding Python
values.

class CType
A description of a system call value type.

names
A list of tokens in the C declaration of the type. For example, 'unsigned long' will be represented
as ['unsigned', 'long'].

ctype
A ctypes data type.

ptr_indirection
The number of pointer indirections. For example, a 'const char **' type will have
ptr_indirection of 2, and the ctype attribute set to c_char.

class SysCallPattern(name=None, args=None, result=None)
An object used to match system calls. name, args, and result specify the patterns for the corresponding attributes
of the SysCall object. If specified, args, should be a list of patterns matching the order of syscall arguments,
and not all arguments have to be listed. Each pattern value can be:

• A callable that receives a SysCallArg or a SysCallResult instance and returns True when the
value matches, and False otherwise.

8 Chapter 3. Module Reference

https://docs.python.org/3/library/traceback.html#traceback.extract_stack
https://docs.python.org/3/library/ctypes.html#ctypes-fundamental-data-types
https://docs.python.org/3/library/ctypes.html#ctypes.c_char

Ptracer Documentation, Release 0.6.1

• An object with a match()method that received an unpacked value of a syscall attribute and returns True
when the value matches, and False otherwise. A regular expression object can be used. For example:
SysCallPattern(name=re.compile('open.*')).

• Any python object, which is compared with the unpacked value directly.

match(syscall)
Return True if syscall matches the pattern and False otherwise.

9

https://docs.python.org/3/library/re.html#re-objects

Ptracer Documentation, Release 0.6.1

10 Chapter 3. Module Reference

Python Module Index

p
ptracer, ??

11

Ptracer Documentation, Release 0.6.1

12 Python Module Index

Index

A
args (SysCall attribute), 7

C
context() (in module ptracer), 7
CType (class in ptracer), 8
ctype (CType attribute), 8

D
disable() (in module ptracer), 7

E
enable() (in module ptracer), 7

M
match() (SysCallPattern method), 9

N
name (SysCall attribute), 7
name (SysCallArg attribute), 8
names (CType attribute), 8

P
pid (SysCall attribute), 7
ptr_indirection (CType attribute), 8
ptracer (module), 1

R
raw_value (SysCallArg attribute), 8
raw_value (SysCallResult attribute), 8
result (SysCall attribute), 7

S
SysCall (class in ptracer), 7
SysCallArg (class in ptracer), 8
SysCallPattern (class in ptracer), 8
SysCallResult (class in ptracer), 8

T
traceback (SysCall attribute), 7
type (SysCallArg attribute), 8
type (SysCallResult attribute), 8

V
value (SysCallArg attribute), 8
value (SysCallResult attribute), 8

13

	Installation
	Building from source
	Running tests

	ptracer Usage
	Filtering

	Module Reference
	Python Module Index
	Index

